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MODELING THE PRESSURE-DILATATION CORRELATION 1

S. Sarkar

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

ABSTRACT

It is generally accepted that the pressure-dilatation, which is an additional compressibility

term in the turbulence transport equations, may be important for high-speed flows. Recent

direct simulations of homogeneous shear turbulence have given concrete evidence that the

pressure-dilatation is important insofar that it contributes to the reduced growth of turbulent

kinetic energy due to compressibility effects. The present work addresses the problem of

modeling the pressure-dilatation. We first isolate a component of the pressure-dilatation

which exhibits temporal oscillations and, using direct numerical simulations of homogeneous

shear turbulence and isotropic turbulence, show that it has a negligible contribution to

the evolution of turbulent kinetic energy. Then, an analysis for the case of homogeneous

turbulence is performed to obtain a model for the non-oscillatory pressure-dilatation. This

model algebraically relates the pressure-dilatation to quantities traditionally obtained in

_incompressible turbulence closures. The model is validated by direct comparison with the

pressure-dilatation data obtained from the simulations.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1 Introduction

The pressure-dilatation appears as an explicit compressibility term in the equations for mean

temperature and turbulent kinetic energy. It has been generally recognized that this term

may be large in high-speed flows and therefore requires consideration in compressible turbu-

lence closures. In Sarkar, Erlebacher, Hussaini and Kreiss 1, it was found that the pressure-

dilatation was smaller than the compressible dissipation in direct simulations of isotroplc

compressible turbulence which suggested that the presure-dilatation can be absorbed into

the model for the compressible dissipation derived therein. However, subsequent direct sim-

ulations of homogeneous shear flow by Blaisdell et al. 2 and Sarkar, Erlebacher and Hussaini 3

showed that the pressure-dilatation is comparable to the compressible dissipation and con-

tributes to the reduced growth of turbulent kinetic energy induced by compressibility. This

has motivated a revisit to the issue of modeling the pressure-dilatation in the present paper.

Recently, Taulbee and VanOsdol 4 and Zeman s have also considered this problem. Taulbee

and VanOsdol related the sum of the pressure-dilatation and compressible dissipation to a

model involving the density variance and the divergence of the mean velocity. A separate

modeled transport equation was proposed for the density variance. Zeman s equated the

pressure-dilatation to the time rate of change of pressure-variance and then, extending the

work by Sarkar et al. 3 on equilibration of the compressible pressure variance on the fast

acoustic time scale, proposed a transport equation for the pressure variance. The objective

of the present work is to deduce a model for the pressure-dilatation which is algebraically

related to quantities obtained by incompressible turbulence closures, in contrast to the pre-

vious models, which require new transport equations.

We consider the behavior of the pressure-dilatation in homogeneous flows. Direct simu-

lation results are presented and compared for two flows - homogeneous shear turbulence and

decaying isotropic turbulence. The DNS results show that the contribution of the pressure-

dilatation to the turbulent kinetic energy evolution is more important in the case of shear

turbulence than in decaying isotropic turbulence. We also find the somewhat surprising re-

sult that the major contributor to the pressure-dilatation is not the compressible pressure,



but is the incompressiblepressureassociatedwith the solenoidalvelocity. The governing

equations are analyzedfor the caseof homogeneousflow to obtain a formal expressionfor

the pressure-dilatationfrom which a model is deducedusing scalingarguments.

2 DNS results

A spectral collocation method along with a third-order accurate Runge-Kutta time advance-

ment was used to solve the compressible Navier-Stokes equations. Details of the calculations

are available in Sarkar, Erlebacher and Hussaini 3 for homogeneous shear flow, and in Er-

lebacher, Hussaini, Kreiss and Sarkar 6 for decaying isotropic turbulence. A uniform 963

grid was used for discretizing the flow domain. Table 1 shows some of the parameters of the

three shear flow cases (S1,$2 and $3), and three decaying isotropic cases (D1,D2, and D3). In

Tables 1 and 2, S and v denote the shear rate and kinematic viscosity used in the (nondimen-

sional) compressible Navier-Stokes equations, while R_,0 and Mr,0 denote the initial values

of the Taylor microscale Reynolds number and turbulent Mach number respectively. Note

that Re;_ = qA/v where q = _ and _ = q/_, while Mt = q/_ where _ = v/_RT is

the mean speed of sound. In order to minimize the introduction of compressible effects due

to initial conditions, all the cases start with incompressible data, that is, the velocity field

is divergence-free (d' = V.u' = 0), the pressure field satisfies the usual Poisson equation for

incompressible flows, and density fluctuations p_ = 0. The initial temperature is calculated

from the equation of state using the known pressure and density fields.

The homogeneous flows considered here have temporally evolving turbulence statistics.

Fig. 1 shows the evolution of the pressure-dilatation ptd' as a function of normalized time

St for the two homogeneous shear cases S1 and $2. Two trends in the behavior of p'd _

are evident from Figs. la-b; first, the pressure-dilatation develops pronounced oscillations

in time and second, it is more negative than positive. These trends are common to all the

simulations of homogeneous shear flow that we have performed. Such oscillations in statisti-

cal quantities are neither expected nor encountered in incompressible flows and complicate

issues in compressible turbulence modeling. By numerical experiments, it was found that
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the nominal time period of the oscillations decreasedapproximately linearly with the speed

of sound. This suggestedthat one could isolate the oscillatory part of p'd' by decomposing

the fluctuating pressure p' into the sum of an incompressible part p/' and a compressible

part pC'. The component p_' is associated with the incompressible velocity field u I which is

divergence-free (V.u I = 0) and satisfies the usual Poisson equation

V2pI' ---I I' I I 1'= -2pu..,.u _,m - -_u m,.u .,_ (1)

and the remainder p' - pl, is the compressible pressure pC,. Since

pl --- pI' na pC'

we have

p'd' = p['d' + pC'd'

Fig. 2a shows the evolution of pV'd' and pI'd' for case S1. The oscillations are substantial

only for pC'd', and furthermore, the peaks and valleys in the evolution of pC'd' in Fig. 2a

seem to be much more symmetric around the origin than those in p'd' in Fig. la.

One of the important effects of p'd' is its influence on the budget of the turbulent kinetic

energy K. The equation for K in homogeneous turbulence is

-_d (K) = p-P - -_e, - -flee + p'd---'7 (2)

. II II

where 7_ = -_,,ju i Uj is the production, es the solenoidal dissipation, ec the compressible

dissipation, and _7 the pressure-dilatation. The overbar denotes a conventional Reynolds

average, while the overtilde denotes a Favre average. A single superscript ' represents fluctua-

tions with respect to the Reynolds average, while a double superscript "signifies fluctuations

with respect to the Favre average. In order to gauge the relative importance of the two com-

ponents _ and p1'd' of the pressure-dilatation in the evolution of the turbulent kinetic

energy, we plot the integrals fpZ'd' dt and fpC'd'dt in Fig. 2b. Fig. 2b shows that the inte-

grated contribution of pI'd' is about an order of magnitude larger than that of pV'd'. Thus,

even though the extrema of pC'd7 are larger than pr,----_, the time-integrated contribution of
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theseoscillations in pC'd' is negligible compared to the contribution of pt'd'. Fig. 3 and

Fig. 4, which contrast the behavior of plr'd' and pC'd' for two other homogeneous shear flow

cases $2 and $3, confirm the aforementioned trends observed in case S1. (See Table 1 for

the initial conditions of cases $2 and $3). It seems that for homogeneous shear flow, pI'd'

dominates pC'd' in the kinetic energy equation. It is interesting that even though both the

dilatation and the compressible pressure are associated with the same hyperbolic system of

equations governing the compressible mode, the correlation of the dilatation with the com-

pressible pressure plays a smaller overall role than the correlation of the dilatation with the

incompressible pressure.

Figs. 5 and 6 show DNS results on the pressure-dilatation from the decaying isotropic

turbulence cases D1 and D2 (see Table 2 for initial conditions). Both pI'd' and pC'd' in

Fig. 5a and 6a show sharp transients initially whereby the pressure field is appropriately

redistributed into incompressible and compressible parts. The integrated pt'di is much larger

than the integrated pC'd' in Figs. 5b and 6b just as in the homogeneous shear ftow case. In

Figs. 5a and 6a, the term f'd' becomes approximately zero after a short initial transient.

This is in agreement with the exact solution derived in Sarkar et al. 1 for the linearized

equations for the compressible mode which predicted that pC'd' _ 0 after a transient on

the acoustic time scale. The DNS reveal an important difference in the behavior of

in isotropic turbulence with respect to homogeneous shear. The term _-_ is predominantly

positive in the case of decaying isotropic turbulence, in contrast to its predominantly negative

behavior in homogeneous shear turbulence. The different signs of the pressure-dilatation have

been explained by a theoretical consideration of the equations of the pressure variance and

density variance by Sarkar, Erlebacher and Hussaini 3.

To summarize, the DNS results show that the pressure-dilatation is predominantly neg-

ative and has pronounced oscillations in homogeneous shear flow, while it is predominantly

positive in decaying isotropic turbulence. We find that the oscillations in p'd' are confined

to the component pC'd' of the pressure-dilatation associated with the compressible pressure,
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and furthermore that, becauseof self-cancellation,the contribution of this oscillatory com-

ponent to the developmentof the kinetic energyis negligible. Therefore, it seemsthat only

the componentpVd' of the pressure-dilatation requires modeling, which we proceed to do in

the next section.

3 Modeling the pressure-dilatation

Consider the Poisson equation Eq. (1) for the incompressible pressure. As is often done for

pressure-strain modeling (see Lumley r, Reynolds s) for incompressible flows, the incompress-

ible pressure can be split into a rapid part pn, which reacts instantaneously to a change in

the mean velocity gradient and a slow part pS'. Thus

where

and

/, = pn, + pS, (3)

---I I I
V2P R' = -2pum,,_u n,m

V2pSI -- I ! I t
=--pu re,nit n,m

Eq. (4) can be exactly solved by Fourier transforms for homogeneous turbulence to give

. krn -I ^I
pR' = 2zp._ff_.um,n u n

(4)

(5)

(6)

Note that q_ denotes the Fourier transform of ¢. From Eq. (6) it follows that

kmkJ E_Cdkpn, d; = 2-_ft_,n f --_ j (7)

Here E_ denotes the spectrum of the mixed Reynolds stress tensor uvu .c' Eq. (7) is an-'n --.7 '

exact expression for the rapid pressure-dilatation pn'd' and, though cumbersome, can be

used for obtaining a simple model. By inspection of Eq. (7), it is clear that because of

the dependence on the local energy spectrum tensors, a transport equation is required for

a general representation of pn'd'. However, we will attempt to obtain an algebraic rather



than a differential model for compressibility terms. This is possibleif there areequilibrium

scalingsin the flow, and the ensuing model will be useful if the additional compressibility

correlations do not dominate the incompressibleterms in a given transport equation.

Definethe tensor Am,, by

Amn = / ......_Zlnj d kkmkjIc (s)

which enables the following compact representation of Eq. (7) of the rapid pressure-dilatation

pWd' = 2_fi_,nAm,_ (9)

The simplest dimensionally consistent form for Am,, which has the correct dependence

| I t Cn
onu i andu/ is

i °' " (10)Amn : Oi2"lXrn 'lZn

i where a2 is a dimensionless parameter which in general is a function of the actual shape
! of the energy spectrum tensors for the incompressible and compressible velocity. We have

found through analysis and DNS that for homogeneous shear turbulence

|

uc = (11)

where u c and u I respectively denote the L2 norms of the compressible and incompressible

velocity fields. In Sarkar et al. 1, we had shown that the dilatational velocity has a fast time

scale which is O(Mt) times the solenoidal velocity's time scale, and therefore the correlation

I I C t
between u,_ and u, should be prorated by a factor of M_. Using Eq. (11) and prorating

the mixed correlation, we obtain from Eq. (10),

Am,, 2--t I--- ot2m i UrnU n (12)

Substituting Eq. (12) into Eq. (9) gives

pn'd' = -a2M2t T_ (13)

where 79 is the production =.I -' -' Eq. (13) may be used as a model for the rapid-

pressure dilatation when using a conventional Reynolds-averaged system of equations. We
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preferusinga combinationof Favreand Reynoldsaverages(eg. seeSarkarand Balakrishnan9

for compressibleflow calculations, and for such a system of equations we propose using

nq. (13) with the production beingp = _ ,,_,,__,_._,,,'-'Z,- Since p'/-fi = O(M_), changing from the

Reynolds-averaged definition to the Favre-averaged definition of the production 7:' introduces

terms of higher order in Mt which may be neglected.

Let us now consider the remaining part of the pressure-dilatation, the slow pressure-

dilatation pS,£. After using Fourier transforms to solve Eq. (5) for the slow pressure, we

obtain the following expression for the slow pressure-dilatation,

pS, d, = -P f km kl kj ( iu._ff jl _tCm. __ iu_ff jI. fi Cm) dk
k2

(14)

Here q_* denotes the complex conjugate of the Fourier transform q_. An order of magnitude

analysis of the r.h.s, of Eq. (14) gives

pS' d' = -fiO ( -_-f ) O ( )Mr (15)

In Eq. (15), I denotes the integral length scale of the turbulence, and the last factor Mt arises

from the disparity between the scales of the incompressible and compressible fields. Using

Eq. (11) for the scaling of u c, and noting that e8 = O(uI3/l), we obtain the model

pS' d' = a3-fie, M_ (16)

Combining Eqs.(13) and (16), we have the following model for the incompressible pressure-

dilatation

pP d' = -a2p-P M: + aafieoM_ (17)

We will now use the DNS data to verify the functional dependence stated in Eq. (17) and

also to calibrate the model coefficients a2 and aa.

Because the production "P --- 0 in decaying isotropic turbulence, the variation of the

incompressible pressure-dilatation with e° can be verified using DNS of isotropic turbulence.

The ratio pX'd'/(fie_M_) is shown as a function of non-dimensional time in Fig. 7a. This

ratio reaches an equilibrium value by a time of 0,25, substantiating the validity of the second
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term in Eq. (17). Based on the DNS value of the equilibrium ratio, the model coefficient a3

in Eq. (17) is taken to be 0.2. The remaining part of the model for the pressure-dilatation

is calibrated against simulations of homogeneous shear flow. Fig. 7b shows that, in accord

with our model, the rapid part of the pressure-dilatation scales as p-'PM_. The ratio (pZ'd' -

0.2e,M_)/(p-'PM_) reaches an approximate equilibrium value of -0.4, suggesting that the

model coefficient a2 = 0.4.

Finally, after using the arguments of section 2 to neglect pC'd' relative to pI'd', the model

for the pressure-dilatation becomes

Fa7= +  3 ,sM, (is)

- .71Z7..,, ¢2If/TRT the turbulentwhere 7:' = -u_,jui u d is the production of kinetic energy, Mt =

Mach number, e, the solenoidal dissipation, and the model coefficients are 42 = 0.4, a3 = 0.2.

We are now in the process of applying the pressure-dilatation model to the compressible shear

layer and the flat plate boundary layer.

4 Conclusions

We have obtained a model for the pressure-dilatation after applying scaling arguments ap-

plied to a formal solution for homogeneous turbulence. This model has been validated

by direct comparison with DNS results for pressure-dilatation in homogeneous shear flow

and isotropic turbulence. Eq. (18) is a reasonable approximation for inhomogeneous flows

without walls. However, future refinements may be necessary to capture different physical

processes of importance in other flows. For example, a process of importance in shock-

turbulence interaction and engine flows is a compressive mean velocity field. In such flows,

the pressure-dilatation model Eq. (18) will have a contribution which is linear in the mean

compression. Inspection of the dilatation equation for homogeneous compression, obtained

by taking the divergence of the momentum equation, shows that there should be such a

term in the pressure-dilatation. Of course, even though the form of the dependence on mean

compression is already present in our model, in order to get the coefficient of the dependence



right, it may be necessaryto to add a term like O_4-fiI_Um,m M2 tO the model, with a 4 perhaps

being calibrated with respect to DNS of homogeneous compression. In wall-bounded flows,

the pressure-dilatation is probably smaller than the estimate given by Eq. (18) because, first,

as shown by Kim and Lee 1° the rms rapid pressure (except very near the wall) is a smaller

fraction of _q2 in wall bounded flows compared to homogeneous shear flow, and second, the

velocity component normal to the wall is preferentially damped.

The model presented here for the pressure-dilatation is currently being applied in the

calculation of inhomogeneous flows. As pointed out in the previous paragraph, some exten-

sions may be necessary in order to incorporate different physical processes in other flows.

We plan to further develop the pressure-dilatation model for more general flows.
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Table 1: Parametersfor the DNS casesof homogeneousshearflow

Case S _ Mt,o R_,o p' d'

S1 10 1/150 0.3 24 0 0

$2 15 1/150 0.3 24 0 0

$3 15 1/125 0.4 20 0 0

Table 2: Parameters for the DNS cases of decaying isotropic turbulence

Case u Mt,o R_,o p' d'

D1 1/200 0.4 31 0 0

D2 1/175 0.5 27 0 0

D3 1/175 0.6 27 0 0

10
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